python – 用于查询日期和价格数据的矢量化方式

题:

概述:

我正在寻找一种矢量化方式来获得第一个看到某种情况的日期.当dfDays中的价格> 1时,找到条件. dfWeeks.target中指定的目标价格.必须在设置目标之后触发此条件.

有没有办法在熊猫的矢量化方式中使用apply或类似的方法进行以下时间序列分析?

数据:

生成freq =’D’测试数据帧

np.random.seed(seed=1)
rng = pd.date_range('1/1/2000', '2000-07-31',freq='D')
weeks = np.random.uniform(low=1.03, high=3, size=(len(rng),))
ts2 = pd.Series(weeks
               ,index=rng)
dfDays = pd.DataFrame({'price':ts2})

现在创建一个resampled freq =’1W-Mon’数据帧

dfWeeks = dfDays.resample('1W-Mon').first()
dfWeeks['target'] = (dfWeeks['price'] + .5).round(2)

使用reindex来对齐df上的索引:

dfWeeks = dfWeeks.reindex(dfDays.index)

所以dfWeeks是一个包含我们将使用的目标值的数据框

    dfWeeks.dropna().head()

               price    target
2000-01-03  1.851533    2.35
2000-01-10  1.625595    2.13
2000-01-17  1.855813    2.36
2000-01-24  2.130619    2.63
2000-01-31  2.756487    3.26

如果我们专注于dfWeeks的第一个目标

match = dfDays[dfDays.price >=  dfWeeks.target.loc['2000-01-03']]

第一场比赛是过去的,所以无效,所以2000-01-12赛季是第一场有效比赛:

match.head()

            price
2000-01-02  2.449039
2000-01-12  2.379882
2000-01-14  2.759891
2000-01-16  2.350821
2000-01-21  2.607467

enter image description here

有没有办法在矢量化方式中使用dfWeeks中的目标条目应用或类似?

期望的输出:

               price    target  target_hit
2000-01-03  1.851533    2.35    2000-01-12
2000-01-10  1.625595    2.13    2000-01-12 
2000-01-17  1.855813    2.36    2000-01-21
2000-01-24  2.130619    2.63    2000-01-25
2000-01-31  2.756487    3.26    nan
最佳答案
大熊猫

def find_match(x):
    match = dfDays.query('index > @x.name & price >= @x.target')
    if not match.empty:
        return match.index[0]

dfWeeks.assign(target_hit=dfWeeks.apply(find_match, 1))

numpy的

timing = dfWeeks.index.values[:, None] < dfDays.index.values
target_hit = dfWeeks.target.values[:, None] <= dfDays.price.values
matches = timing & target_hit
got_match = matches.any(1)
first = matches.argmax(1)[got_match]

dfWeeks.loc[got_match, 'target_hit'] = dfDays.index.values[first]
dfWeeks

都屈服了

               price  target target_hit
2000-01-03  1.851533    2.35 2000-01-12
2000-01-10  1.625595    2.13 2000-01-12
2000-01-17  1.855813    2.36 2000-01-21
2000-01-24  2.130619    2.63 2000-01-25
2000-01-31  2.756487    3.26        NaT
2000-02-07  1.859582    2.36 2000-02-09
2000-02-14  1.066028    1.57 2000-02-15
2000-02-21  1.912350    2.41 2000-03-09
2000-02-28  1.446907    1.95 2000-02-29
2000-03-06  2.408524    2.91 2000-03-28
2000-03-13  2.337675    2.84 2000-03-17
2000-03-20  2.620561    3.12        NaT
2000-03-27  2.770113    3.27        NaT
2000-04-03  2.930735    3.43        NaT
2000-04-10  1.834030    2.33 2000-04-12
2000-04-17  2.068304    2.57 2000-04-19
2000-04-24  2.391067    2.89 2000-05-11
2000-05-01  2.518262    3.02        NaT
2000-05-08  1.085764    1.59 2000-05-10
2000-05-15  1.579992    2.08 2000-05-16
2000-05-22  2.619997    3.12        NaT
2000-05-29  1.269047    1.77 2000-05-31
2000-06-05  1.171789    1.67 2000-06-06
2000-06-12  2.175277    2.68 2000-06-20
2000-06-19  1.338879    1.84 2000-06-20
2000-06-26  2.977574    3.48        NaT
2000-07-03  1.160680    1.66 2000-07-04
2000-07-10  2.615366    3.12        NaT
2000-07-17  2.478080    2.98        NaT
2000-07-24  2.899562    3.40        NaT
2000-07-31  2.220492    2.72        NaT

转载注明原文:python – 用于查询日期和价格数据的矢量化方式 - 代码日志